
 

 Analysed by Slither 
 
 
 
 
 

Introduction 
This document summarizes the findings of the security audit conducted on the smart 
contract Foalca.sol. Each finding is classified based on its potential impact, confidence 
level, and nature. Explanations are provided for each finding, along with space for the 
assessment of practical impact. 

Resources 

The analysis was performed using the Slither - Static Analyzer for Solidity and Vyper tool.  

Tools 

The analysis does not take into account external platforms custom-built to manage or protect 
contract functions. 

Disclaimer 

This security analysis is the first basic analysis that only evaluates the condition, 
optimization, and security of the contract code. It does not promise any future project results 
and makes no guarantees to anyone. 

 

 

1 

https://github.com/crytic/slither


1. Findings Summary 
 

Issue Category Number of Findings Impact 

Uninitialized Local Variable 1 Medium 

Missing Zero Address Check 1 Low 

Variable Scope Issue 1 Low 

Timestamp Dependence 2 Low 

Use of Assembly 1 Informational 

Costly Loop Operation 1 Informational 

Dead Code 5 Informational 

Solidity Version Usage 9 Informational 

Naming Convention Issues 2 Informational 

Constant Variables Suggestion 2 Optimization 

 
 

 

2 



2. Detailed Findings 

2.1 Uninitialized Local Variable 

●​ Location: Foalca.executeProposal(uint256) — amount_scope_0​
 

●​ Impact: Medium​
 

●​ Description:​
 A local variable was declared without initialization. Uninitialized variables can result 
in unexpected behavior and should be properly set before use. 

 

2.2 Missing Zero Address Check 

●​ Location: Foalca.setRewardsOperator(address _operator)​
 

●​ Impact: Low​
 

●​ Description:​
 There is no check ensuring that the provided address _operator is not the zero 
address (address(0)). This could allow setting invalid critical addresses. 

 

2.3 Variable Scope Issue 

●​ Location: Foalca.executeProposal(uint256) — amount​
 

●​ Impact: Low​
 

●​ Description:​
 A variable (amount) might be used before proper declaration or initialization. This 
could introduce confusion or potential minor logic errors. 

 

 

 

 

 

3 



2.4 Timestamp Dependence 

●​ Location:​
 

○​ Foalca.distributeFromDevelopmentInternal()​
 

○​ Foalca.scheduledBurnInternal()​
 

●​ Impact: Low​
 

●​ Description:​
 The contract uses block.timestamp for time-based conditions. While common, 
this method can be slightly manipulated by miners/validators within acceptable 
margins.​
 

 

2.5 Use of Inline Assembly 

●​ Location: ECDSA.tryRecover(bytes32, bytes)​
 

●​ Impact: Informational​
 

●​ Description:​
 Assembly is used inside OpenZeppelin’s ECDSA library. While not a vulnerability per 
se, assembly code is harder to audit and prone to subtle mistakes if modified.​
 

 

2.6 Costly Loop Operation 

●​ Location: Foalca.removeApprover(address)​
 

●​ Impact: Informational​
 

●​ Description:​
 A costly operation (approverList.pop()) is used inside a loop, potentially 
leading to increased gas consumption in transactions.​
 

 

 

4 



2.7 Dead Code 

●​ Location:​
 

○​ Context._contextSuffixLength()​
 

○​ Context._msgData()​
 

○​ Several unused ECDSA functions​
 

●​ Impact: Informational​
 

●​ Description:​
 Dead code (unused functions) slightly bloats the contract's size and can affect 
readability and maintenance but does not impact security.​
 

 

2.8 Solidity Version Usage 

●​ Location:​
 

○​ Contract and dependencies​
 

●​ Impact: Informational​
 

●​ Description:​
 The pragma directive uses Solidity ^0.8.20 and compilation with 0.8.29, which is 
relatively new. It is generally recommended to use well-tested versions (e.g., 
0.8.16) for production deployments. 

 

 

 

 

 

 

 

 

5 



2.9 Naming Convention Issues 

●​ Location:​
 

○​ Variable: _isExcludedFromFees​
 

○​ Parameter: _operator​
 

●​ Impact: Informational​
 

●​ Description:​
 Some variables do not adhere to the Solidity naming convention (mixedCase). This 
does not affect functionality but reduces code consistency and clarity.​
 

 

2.10 Constant Variables Suggestion 

●​ Location:​
 

○​ burnPool​
 

○​ burnAddress​
 

●​ Impact: Optimization​
 

●​ Description:​
 These variables are immutable after deployment and should be marked as 
constant. This would optimize gas usage and clarify their purpose in the code.​
 

 

 

 

 

 

 

 

6 



3. General Conclusion 
The analysis found no critical vulnerabilities. Most findings are related to code style, minor 
optimizations, or gas efficiency improvements.​
 The contract is currently secure for operation in its deployed state, with no immediate need 
for redeployment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 


	 
	 Analysed by Slither 
	Introduction 
	Resources 
	Tools 
	Disclaimer 
	 
	 
	1. Findings Summary 
	 
	 
	2. Detailed Findings 
	2.1 Uninitialized Local Variable 
	2.2 Missing Zero Address Check 
	2.3 Variable Scope Issue 
	 
	 
	 
	 
	 
	2.4 Timestamp Dependence 
	2.5 Use of Inline Assembly 
	2.6 Costly Loop Operation 
	 
	 
	2.7 Dead Code 
	2.8 Solidity Version Usage 
	 
	 
	 
	 
	2.9 Naming Convention Issues 
	2.10 Constant Variables Suggestion 

	 
	 
	 
	3. General Conclusion 


